Algebraic and geometric methods in enumerative combinatorics
نویسنده
چکیده
Enumerative combinatorics is about counting. The typical question is to find the number of objects with a given set of properties. However, enumerative combinatorics is not just about counting. In “real life”, when we talk about counting, we imagine lining up a set of objects and counting them off: 1, 2, 3, . . .. However, families of combinatorial objects do not come to us in a natural linear order. To give a very simple example: we do not count the squares in an m × n rectangular grid linearly. Instead, we use the rectangular structure to understand that the number of squares is m ·n. Similarly, to count a more complicated combinatorial set, we usually spend most of our efforts understanding the underlying structure of the individual objects, or of the set itself. Many combinatorial objects of interest have a rich and interesting algebraic or geometric structure, which often becomes a very powerful tool towards their enumeration. In fact, there are many families of objects that we only know how to count using these tools. This chapter highlights some key aspects of the rich interplay between algebra, discrete geometry, and combinatorics, with an eye towards enumeration.
منابع مشابه
Mathematisches Forschungsinstitut Oberwolfach Report No
Enumerative Combinatorics focusses on the exact and asymptotic counting of combinatorial objects. It is strongly connected to the probabilistic analysis of large combinatorial structures and has fruitful connections to several disciplines, including statistical physics, algebraic combinatorics, graph theory and computer science. This workshop brought together experts from all these various fiel...
متن کاملTHE (△,□)-EDGE GRAPH G△,□ OF A GRAPH G
To a simple graph $G=(V,E)$, we correspond a simple graph $G_{triangle,square}$ whose vertex set is ${{x,y}: x,yin V}$ and two vertices ${x,y},{z,w}in G_{triangle,square}$ are adjacent if and only if ${x,z},{x,w},{y,z},{y,w}in Vcup E$. The graph $G_{triangle,square}$ is called the $(triangle,square)$-edge graph of the graph $G$. In this paper, our ultimate goal is to provide a link between the ...
متن کاملRecent Advances in Algebraic and Enumerative Combinatorics
Algebraic and enumerative combinatorics is concerned with objects that have both a combinatorial and an algebraic interpretation. It is a highly active area of the mathematical sciences, with many connections and applications to other areas, including algebraic geometry, representation theory, topology, mathematical physics and statistical mechanics. Enumerative questions arise in the mathemati...
متن کاملEnumerative and Algebraic Combinatorics
Enumeration, alias counting, is the oldest mathematical subject, while Algebraic Combinatorics is one of the youngest. Some cynics claim that Algebraic Combinatorics is not really a new subject but just a new name given to Enumerative Combinatorics in order to enhance its (former) poor image, but Algebraic Combinatorics is in fact the synthesis of two opposing trends: abstraction of the concret...
متن کاملFour Entries for Kluwer Encyclopaedia of Mathematics
The Schubert Calculus is a formal calculus of symbols representing geometric conditions used to solve problems in enumerative geometry. This originated in work of Chasles [9] on conics and was systematized and used to great effect by Schubert in his treatise “Kalkül der abzählenden Geometrie” [33]. The justification of Schubert’s enumerative calculus and the verification of the numbers he obtai...
متن کامل